Which hormone has inhibiting effects on growth of plants

  1. New study shows how plants regulate their growth
  2. Plant hormone regulation of abiotic stress responses
  3. Paclobutrazol as a plant growth regulator
  4. Q&A: How do plants respond to ethylene and what is its importance?
  5. Frontiers
  6. Plant Hormones: Describing the Big 5
  7. Hormone
  8. New study shows how plants regulate their growth
  9. Plant hormone regulation of abiotic stress responses
  10. Frontiers


Download: Which hormone has inhibiting effects on growth of plants
Size: 38.78 MB

New study shows how plants regulate their growth

1 2 New study shows how plants regulate their growth-inhibiting hormones to survive Date: July 15, 2020 Source: Nagoya University Summary: Scientists have, for the first time, observed one of the natural mechanisms underlying the regulation of the levels of growth inhibiting hormone in plants. This mechanism had been hitherto seen in bacteria, but its discovery in plants will enable novel ways of increasing crop productivity globally. Share: In a world with a consistently growing population and a climate crisis, food shortage is a looming threat. To alleviate this threat, crop scientists, botanists, genetic engineers, and others, have been exploring ways of boosting crop productivity and resilience. One way to control plant growth and physiology is to regulate the levels of "phytohormones" or plant hormones. However, much remains to be known about the mechanisms that underlie this hormonal regulation in plants, limiting advancement in this direction. Now, in a study led by Nagoya University Japan, a team of scientists has discovered, using rice plants as the study model, that a process called "allosteric regulation" is involved in maintaining the phytohormonal balance in plants. Their findings, published in Nature Communications, could hold the key to significantly advancing the research on plant growth and development, providing a potential solution for food security. Plants survive by adapting their development and physiology to their surrounding environments by controll...

Plant hormone regulation of abiotic stress responses

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript. Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultura...

Paclobutrazol as a plant growth regulator

Plant growth regulators are chemical substances which govern all the factors of development and growth within plants. The application of plant growth regulators to crops modifies hormonal balance and growth leading to increased yield, enhanced crop tolerance against abiotic stress and improved physiological trait of crops. Paclobutrazol (PBZ) [(2RS, 3RS)-1-(4-chlorophenyl)- 4, 4-dimethyl-2-(1H-1, 2, 4-trizol-1-yl)-pentan-3-ol], is one of the members of triazole family having growth regulating property. The growth regulating properties of PBZ are mediated by changes in the levels of important plant hormones including the gibberellins (GAs), abscisic acid (ABA) and cytokinins (CK). PBZ affects the isoprenoid pathway, and alters the levels of plant hormones by inhibiting gibberellin synthesis and increasing cytokinins level and consequent reduction in stem elongation. When gibberellins synthesis is inhibited, more precursors in the terpenoid pathway accumulate and that resulted in the production of abscisic acid. PBZ is more effective when applied to the growing media and application on the growing medium would give longer absorption time and more absorption of active ingredient than foliar spray. The application of PBZ to crops is important in reducing plant height to prevent lodging and in increasing number and weight of fruits per tree, in improving the fruit quality in terms of increases in carbohydrates, TSS, TSS/TA and decreases acidity. It further reduces evapo-transpi...

Q&A: How do plants respond to ethylene and what is its importance?

Ethylene gas is a major plant hormone that influences diverse processes in plant growth, development and stress responses throughout the plant life cycle. Responses to ethylene, such as fruit ripening, are significant to agriculture. The core molecular elements of the ethylene-signaling pathway have been uncovered, revealing a unique pathway that is negatively regulated. Practical applications of this knowledge can lead to substantial improvements in agriculture. The simple hydrocarbon ethylene (C 2H 4) is a tiny gaseous molecule of great significance. In addition to being the most widely produced organic compound in the world (used in manufacturing numerous products such as rubber, plastics, paints, detergents and toys), ethylene is a major hormone in plant biology. This volatile molecule mediates many complex aspects of plant growth, development and survival throughout the plant life cycle, including seed germination, root development, shoot and root growth, formation of adventitious roots, abscission of leaves and fruits, flowering, sex determination, and senescence of flowers and leaves [ Ethylene is different from non-gaseous hormones in several ways. Ethylene moves within the plant by diffusion and is thought to be synthesized at or near its site of action, similar to the gaseous signal nitric oxide in mammals. Because ethylene can diffuse across membranes into nearby cells, there is no requirement for transporter proteins to deliver ethylene to target cells, and, in...

Frontiers

Saqib Saleem Akhtar 1†, Mengistu F. Mekureyaw 1†, Chandana Pandey 1† and Thomas Roitsch 1,2* • 1Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark • 2Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia It has been recognized that cytokinins are plant hormones that influence not only numerous aspects of plant growth, development and physiology, including cell division, chloroplast differentiation and delay of senescence but the interaction with other organisms, including pathogens. Cytokinins are not only produced by plants but are also by other prokaryotic and eukaryotic organism such as bacteria, fungi, microalgae and insects. Notably, cytokinins are produced both by pathogenic and also beneficial microbes and are known to induce resistance in plants against pathogen infections. In this review the contrasting role of cytokinin for the defence and susceptibility of plants against bacterial and fungal pathogen and pest insects is assessed. We also discuss the cross talk of cytokinins with other phytohormones and the underlying mechanism involved in enhancing plant immunity against pathogen infections and explore possible practical applications in crop plant production. Introduction Plant hormones (Phytohormones) are naturally occurring small organic molecules that affect numerous aspects of growth and differentiation in plants and are involved in alleviating different biotic and abiotic stre...

Plant Hormones: Describing the Big 5

Hormones – Mighty Messengers! Hormones get things done. Think of them as chemical messengers that are made in one place in the body and deliver their message in a totally different place in the body. And just like hot sauce, a little goes a long way. Hormones are usually found in very small concentrations, but boy to they pack a punch! We know hormones cause a lot of changes in humans (ah, puberty), but did you know that plants have hormones, too? Plants miss out on all the fun of body hair, acne, and voice changes, but read on to learn about the amazing effects that hormones have on plant growth and development! The Big Five We’ll cover five major types of plant hormones: auxin, gibberellin, cytokinin, ethylene, and abscisic acid. These hormones can work together or independently to influence plant growth. AUXIN You’ve seen auxin in action. Well you haven’t seen the actual auxin molecule itself with the naked eye, but you’ve seen what it can do to a plant grown near a window. Have you ever wondered how a plant bends towards sunlight? Well, it has to do with auxin in the stem. Darwin and his son were curious about it, too. (Published in: The Power and Movement in Plants) However, they didn’t know at the time what exactly was causing plants to bend toward the light. Auxin itself wasn’t discovered until the late 1920s, and it was the first of the 5 major types of plant hormones to be studied. Auxin has lots of jobs but most importantly it stimulates growth, and if a plant do...

Hormone

Growth inhibitors Growth inhibitors of various types have been identified in plants. The best Another growth inhibitor is The hormonal interaction Another example of hormonal interaction occurs during the The target tissues probably play a role in such sequential actions, and it is likely that changes in their responsiveness to hormonal action, perhaps correlated with environmental stimuli, contribute to adaptive

New study shows how plants regulate their growth

1 2 New study shows how plants regulate their growth-inhibiting hormones to survive Date: July 15, 2020 Source: Nagoya University Summary: Scientists have, for the first time, observed one of the natural mechanisms underlying the regulation of the levels of growth inhibiting hormone in plants. This mechanism had been hitherto seen in bacteria, but its discovery in plants will enable novel ways of increasing crop productivity globally. Share: In a world with a consistently growing population and a climate crisis, food shortage is a looming threat. To alleviate this threat, crop scientists, botanists, genetic engineers, and others, have been exploring ways of boosting crop productivity and resilience. One way to control plant growth and physiology is to regulate the levels of "phytohormones" or plant hormones. However, much remains to be known about the mechanisms that underlie this hormonal regulation in plants, limiting advancement in this direction. Now, in a study led by Nagoya University Japan, a team of scientists has discovered, using rice plants as the study model, that a process called "allosteric regulation" is involved in maintaining the phytohormonal balance in plants. Their findings, published in Nature Communications, could hold the key to significantly advancing the research on plant growth and development, providing a potential solution for food security. Plants survive by adapting their development and physiology to their surrounding environments by controll...

Plant hormone regulation of abiotic stress responses

Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications. • Zhu, J. K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016). • Hamann, E. et al. Review: plant eco-evolutionary responses to climate change: emerging directions. Plant Sci. 304, 110737 (2021). • Waadt, R. Phytohormone signaling mechanisms and genetic methods for their modulation and detect...

Frontiers

Saqib Saleem Akhtar 1†, Mengistu F. Mekureyaw 1†, Chandana Pandey 1† and Thomas Roitsch 1,2* • 1Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark • 2Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia It has been recognized that cytokinins are plant hormones that influence not only numerous aspects of plant growth, development and physiology, including cell division, chloroplast differentiation and delay of senescence but the interaction with other organisms, including pathogens. Cytokinins are not only produced by plants but are also by other prokaryotic and eukaryotic organism such as bacteria, fungi, microalgae and insects. Notably, cytokinins are produced both by pathogenic and also beneficial microbes and are known to induce resistance in plants against pathogen infections. In this review the contrasting role of cytokinin for the defence and susceptibility of plants against bacterial and fungal pathogen and pest insects is assessed. We also discuss the cross talk of cytokinins with other phytohormones and the underlying mechanism involved in enhancing plant immunity against pathogen infections and explore possible practical applications in crop plant production. Introduction Plant hormones (Phytohormones) are naturally occurring small organic molecules that affect numerous aspects of growth and differentiation in plants and are involved in alleviating different biotic and abiotic stre...