Inverse trigonometric functions formulas

  1. Formulas for Inverse Trigonometric Functions
  2. Inverse trigonometric functions
  3. 6.3 Inverse Trigonometric Functions
  4. Intro to inverse trig functions (article)
  5. Inverse trigonometric functions review (article)
  6. Trigonometric equations and identities
  7. Differentiating inverse trig functions review (article)
  8. Intro to inverse trig functions (article)
  9. Inverse trigonometric functions review (article)
  10. Differentiating inverse trig functions review (article)


Download: Inverse trigonometric functions formulas
Size: 38.5 MB

Formulas for Inverse Trigonometric Functions

We and our partners use cookies to Store and/or access information on a device. We and our partners use data for Personalised ads and content, ad and content measurement, audience insights and product development. An example of data being processed may be a unique identifier stored in a cookie. Some of our partners may process your data as a part of their legitimate business interest without asking for consent. To view the purposes they believe they have legitimate interest for, or to object to this data processing use the vendor list link below. The consent submitted will only be used for data processing originating from this website. If you would like to change your settings or withdraw consent at any time, the link to do so is in our privacy policy accessible from our home page.. • • Menu Toggle • Application of Derivatives • Binomial Theorem • Circles • Complex Numbers • Continuity • Definite Integration • Determinants • Differentiability • Differential Equations • Differentiation • Ellipse • Function • Hyperbola • Indefinite Integration • Inverse Trigonometric Function • Limits • Logarithm • Matrices • Parabola • Permutation & Combination • Probability • Relation • Sequences & Series • Sets • Statistics • Straight Line • Trigonometric Equations • Trigonometry • Vectors • Menu Toggle • Circle • Ellipse • Function • Hyperbola • Integration • Inverse Trigonometric Function • Limit • Logarithm • Parabola • Permutation & Combination • Probability • Series • Sets • Statisti...

Inverse trigonometric functions

• العربية • Bân-lâm-gú • Башҡортса • Български • Català • Čeština • Dansk • Deutsch • Eesti • Ελληνικά • Español • Esperanto • Euskara • فارسی • Français • Galego • 한국어 • Հայերեն • हिन्दी • Hrvatski • Bahasa Indonesia • Italiano • עברית • Қазақша • Кыргызча • Latina • Latviešu • Македонски • Nederlands • 日本語 • Norsk bokmål • Norsk nynorsk • ភាសាខ្មែរ • Polski • Português • Русский • සිංහල • Slovenčina • Slovenščina • کوردی • Српски / srpski • Srpskohrvatski / српскохрватски • Suomi • தமிழ் • ไทย • Türkçe • Українська • Tiếng Việt • 粵語 • 中文 See also: Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin( x), arccos( x), arctan( x), etc. [ citation needed] when measuring in radians, an angle of θ radians will correspond to an rθ, where r is the radius of the circle. Thus in the x" is the same as "the angle whose cosine is x", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. asin, acos, atan. The notations sin −1( x), cos −1( x), tan −1( x), etc., as introduced by sin [−1]( x), cos [−1]( x), tan [−1]( x) – conventions consistent with the notation of an tan − 1 ⁡ ( x ) = is denoted by π Z := π Z + ( 0 , π ) = ⋯ ∪ ( − 2 π , − π ) ∪ ( − π , 0 ) ∪ ( 0 , π ) ∪ ( π , 2 π ) ∪ ⋯ = R ∖ π Z π Z + ( − π 2 , π 2 ) = ⋯ ∪ ( − 3 π 2 , − π 2 ) ∪ ( − π 2 , π 2 ) ∪ ( π 2 , 3 π 2 ) ∪ ⋯ = R ∖ ( π 2 + π Z ) The table above in...

6.3 Inverse Trigonometric Functions

3 Polynomial and Rational Functions • Introduction to Polynomial and Rational Functions • 3.1 Complex Numbers • 3.2 Quadratic Functions • 3.3 Power Functions and Polynomial Functions • 3.4 Graphs of Polynomial Functions • 3.5 Dividing Polynomials • 3.6 Zeros of Polynomial Functions • 3.7 Rational Functions • 3.8 Inverses and Radical Functions • 3.9 Modeling Using Variation • 4 Exponential and Logarithmic Functions • Introduction to Exponential and Logarithmic Functions • 4.1 Exponential Functions • 4.2 Graphs of Exponential Functions • 4.3 Logarithmic Functions • 4.4 Graphs of Logarithmic Functions • 4.5 Logarithmic Properties • 4.6 Exponential and Logarithmic Equations • 4.7 Exponential and Logarithmic Models • 4.8 Fitting Exponential Models to Data • 7 Trigonometric Identities and Equations • Introduction to Trigonometric Identities and Equations • 7.1 Solving Trigonometric Equations with Identities • 7.2 Sum and Difference Identities • 7.3 Double-Angle, Half-Angle, and Reduction Formulas • 7.4 Sum-to-Product and Product-to-Sum Formulas • 7.5 Solving Trigonometric Equations • 7.6 Modeling with Trigonometric Functions • 8 Further Applications of Trigonometry • Introduction to Further Applications of Trigonometry • 8.1 Non-right Triangles: Law of Sines • 8.2 Non-right Triangles: Law of Cosines • 8.3 Polar Coordinates • 8.4 Polar Coordinates: Graphs • 8.5 Polar Form of Complex Numbers • 8.6 Parametric Equations • 8.7 Parametric Equations: Graphs • 8.8 Vectors • 9 Systems of...

Intro to inverse trig functions (article)

tan ⁡ ( L ) = opposite adjacent = 35 65 \tan(L) = \dfrac tan ( L ) = adjacent opposite ​ = 6 5 3 5 ​ tangent, left parenthesis, L, right parenthesis, equals, start fraction, start text, o, p, p, o, s, i, t, e, end text, divided by, start text, a, d, j, a, c, e, n, t, end text, end fraction, equals, start fraction, 35, divided by, 65, end fraction • Inverse sine ( sin ⁡ − 1 ) (\sin^) ( tan − 1 ) left parenthesis, tangent, start superscript, minus, 1, end superscript, right parenthesis does the opposite of the tangent. Trigonometric functions input angles and output side ratios Inverse trigonometric functions input side ratios and output angles sin ⁡ ( θ ) = opposite hypotenuse \sin (\theta)=\dfrac \right)=\theta tan − 1 ( adjacent opposite ​ ) = θ tangent, start superscript, minus, 1, end superscript, left parenthesis, start fraction, start text, o, p, p, o, s, i, t, e, end text, divided by, start text, a, d, j, a, c, e, n, t, end text, end fraction, right parenthesis, equals, theta The expression sin ⁡ − 1 ( x ) \sin^ sin ( x ) 1 ​ start fraction, 1, divided by, sine, left parenthesis, x, right parenthesis, end fraction . In other words, the − 1 -1 − 1 minus, 1 is not an exponent. Instead, it simply means inverse function. A coordinate plane. The x-axis starts at zero and goes to ninety by tens. It is labeled degrees. The y-axis starts at zero and goes to two by two tenths. It is labeled a ratio. The graphed line is labeled sine of x, which is a nonlinear curve. The line f...

Inverse trigonometric functions review (article)

arcsin ⁡ ( x ) \arcsin(x) arcsin ( x ) \arcsin, left parenthesis, x, right parenthesis , or sin ⁡ − 1 ( x ) \sin^(x) sin − 1 ( x ) sine, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis , is the inverse of sin ⁡ ( x ) \sin(x) sin ( x ) sine, left parenthesis, x, right parenthesis . arccos ⁡ ( x ) \arccos(x) arccos ( x ) \arccos, left parenthesis, x, right parenthesis , or cos ⁡ − 1 ( x ) \cos^(x) cos − 1 ( x ) cosine, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis , is the inverse of cos ⁡ ( x ) \cos(x) cos ( x ) cosine, left parenthesis, x, right parenthesis . arctan ⁡ ( x ) \arctan(x) arctan ( x ) \arctan, left parenthesis, x, right parenthesis , or tan ⁡ − 1 ( x ) \tan^(x) tan − 1 ( x ) tangent, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis , is the inverse of tan ⁡ ( x ) \tan(x) tan ( x ) tangent, left parenthesis, x, right parenthesis . Radians Degrees − π 2 ≤ arcsin ⁡ ( θ ) ≤ π 2 -\dfrac − 2 π ​ < arctan ( θ ) < 2 π ​ minus, start fraction, pi, divided by, 2, end fraction, is less than, \arctan, left parenthesis, theta, right parenthesis, is less than, start fraction, pi, divided by, 2, end fraction − 9 0 ∘ < arctan ⁡ ( θ ) < 9 0 ∘ -90^\circ<\arctan(\theta)<90^\circ − 9 0 ∘ < arctan ( θ ) < 9 0 ∘ minus, 90, degrees, is less than, \arctan, left parenthesis, theta, right parenthesis, is less than, 90, degrees The trigonometric functions aren't really inverti...

Trigonometric equations and identities

In this unit, you'll explore the power and beauty of trigonometric equations and identities, which allow you to express and relate different aspects of triangles, circles, and waves. You'll learn how to use trigonometric functions, their inverses, and various identities to solve and check equations and inequalities, and to model and analyze problems involving periodic motion, sound, light, and more.

Differentiating inverse trig functions review (article)

d d x arcsin ⁡ ( x ) = 1 1 − x 2 \dfrac d x d ​ arcsin ( x ) = 1 − x 2 ​ 1 ​ start fraction, d, divided by, d, x, end fraction, \arcsin, left parenthesis, x, right parenthesis, equals, start fraction, 1, divided by, square root of, 1, minus, x, squared, end square root, end fraction d d x arccos ⁡ ( x ) = − 1 1 − x 2 \dfrac d x d ​ arccos ( x ) = − 1 − x 2 ​ 1 ​ start fraction, d, divided by, d, x, end fraction, \arccos, left parenthesis, x, right parenthesis, equals, minus, start fraction, 1, divided by, square root of, 1, minus, x, squared, end square root, end fraction d/dx arccot(x) = - 1 / (1+x²) d/dx arcsec(x) = 1 / (x√(x²-1)) ; for 0≤x<π/2 and π≤x<3π/2 d/dx arcsec(x) = 1 / (|x|√(x²-1)) ; for 0≤x<π/2 and π/2

Intro to inverse trig functions (article)

tan ⁡ ( L ) = opposite adjacent = 35 65 \tan(L) = \dfrac tan ( L ) = adjacent opposite ​ = 6 5 3 5 ​ tangent, left parenthesis, L, right parenthesis, equals, start fraction, start text, o, p, p, o, s, i, t, e, end text, divided by, start text, a, d, j, a, c, e, n, t, end text, end fraction, equals, start fraction, 35, divided by, 65, end fraction • Inverse sine ( sin ⁡ − 1 ) (\sin^) ( tan − 1 ) left parenthesis, tangent, start superscript, minus, 1, end superscript, right parenthesis does the opposite of the tangent. Trigonometric functions input angles and output side ratios Inverse trigonometric functions input side ratios and output angles sin ⁡ ( θ ) = opposite hypotenuse \sin (\theta)=\dfrac \right)=\theta tan − 1 ( adjacent opposite ​ ) = θ tangent, start superscript, minus, 1, end superscript, left parenthesis, start fraction, start text, o, p, p, o, s, i, t, e, end text, divided by, start text, a, d, j, a, c, e, n, t, end text, end fraction, right parenthesis, equals, theta The expression sin ⁡ − 1 ( x ) \sin^ sin ( x ) 1 ​ start fraction, 1, divided by, sine, left parenthesis, x, right parenthesis, end fraction . In other words, the − 1 -1 − 1 minus, 1 is not an exponent. Instead, it simply means inverse function. A coordinate plane. The x-axis starts at zero and goes to ninety by tens. It is labeled degrees. The y-axis starts at zero and goes to two by two tenths. It is labeled a ratio. The graphed line is labeled sine of x, which is a nonlinear curve. The line f...

Inverse trigonometric functions review (article)

arcsin ⁡ ( x ) \arcsin(x) arcsin ( x ) \arcsin, left parenthesis, x, right parenthesis , or sin ⁡ − 1 ( x ) \sin^(x) sin − 1 ( x ) sine, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis , is the inverse of sin ⁡ ( x ) \sin(x) sin ( x ) sine, left parenthesis, x, right parenthesis . arccos ⁡ ( x ) \arccos(x) arccos ( x ) \arccos, left parenthesis, x, right parenthesis , or cos ⁡ − 1 ( x ) \cos^(x) cos − 1 ( x ) cosine, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis , is the inverse of cos ⁡ ( x ) \cos(x) cos ( x ) cosine, left parenthesis, x, right parenthesis . arctan ⁡ ( x ) \arctan(x) arctan ( x ) \arctan, left parenthesis, x, right parenthesis , or tan ⁡ − 1 ( x ) \tan^(x) tan − 1 ( x ) tangent, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis , is the inverse of tan ⁡ ( x ) \tan(x) tan ( x ) tangent, left parenthesis, x, right parenthesis . Radians Degrees − π 2 ≤ arcsin ⁡ ( θ ) ≤ π 2 -\dfrac − 2 π ​ < arctan ( θ ) < 2 π ​ minus, start fraction, pi, divided by, 2, end fraction, is less than, \arctan, left parenthesis, theta, right parenthesis, is less than, start fraction, pi, divided by, 2, end fraction − 9 0 ∘ < arctan ⁡ ( θ ) < 9 0 ∘ -90^\circ<\arctan(\theta)<90^\circ − 9 0 ∘ < arctan ( θ ) < 9 0 ∘ minus, 90, degrees, is less than, \arctan, left parenthesis, theta, right parenthesis, is less than, 90, degrees The trigonometric functions aren't really inverti...

Differentiating inverse trig functions review (article)

d d x arcsin ⁡ ( x ) = 1 1 − x 2 \dfrac d x d ​ arcsin ( x ) = 1 − x 2 ​ 1 ​ start fraction, d, divided by, d, x, end fraction, \arcsin, left parenthesis, x, right parenthesis, equals, start fraction, 1, divided by, square root of, 1, minus, x, squared, end square root, end fraction d d x arccos ⁡ ( x ) = − 1 1 − x 2 \dfrac d x d ​ arccos ( x ) = − 1 − x 2 ​ 1 ​ start fraction, d, divided by, d, x, end fraction, \arccos, left parenthesis, x, right parenthesis, equals, minus, start fraction, 1, divided by, square root of, 1, minus, x, squared, end square root, end fraction d/dx arccot(x) = - 1 / (1+x²) d/dx arcsec(x) = 1 / (x√(x²-1)) ; for 0≤x<π/2 and π≤x<3π/2 d/dx arcsec(x) = 1 / (|x|√(x²-1)) ; for 0≤x<π/2 and π/2