Tan half angle formula

  1. 3.4.4: Solving Equations with Double
  2. Tangent half
  3. How do you use half angle formula to find tan 15?
  4. The Proof of the Tangent Half
  5. Half Angle Formulas in Trigonometry with Examples and Derivations
  6. The Proof of the Tangent Half
  7. Tangent half
  8. 3.4.4: Solving Equations with Double
  9. Half Angle Formulas in Trigonometry with Examples and Derivations
  10. How do you use half angle formula to find tan 15?


Download: Tan half angle formula
Size: 62.63 MB

3.4.4: Solving Equations with Double

\( \newcommand\) • • • • • • Solve sine, cosine, and tangent of angles multiplied or divided by 2. Trig Riddle: I am an angle x such that \(0\leq x<2\pi \). I satisfy the equation \(\sin 2x−\sin x=0\). What angle am I? Solve Trigonometric Equations We can use the half and double angle formulas to solve trigonometric equations. Let's solve the following trigonometric equations. • Solve \(\tan 2x+\tan x=0\) when \(0\leq x<2\pi \). Change \(\tan 2x\) and simplify. \(\begin Review Solve the following equations for \(0\leq x<2\pi \). • \(\cos x−\cos \dfrac=1\) • \(\cos 2x−1=\sin ^2x\) • \(\cos 2x=\cos x\) • \(\sin 2x−\cos 2x=1\) • \(\sin ^2x−2=\cos 2x\) • \(\cot x+\tan x=2\csc 2x\)

Tangent half

tan ⁡ 1 2 ( η ± θ ) = tan ⁡ 1 2 η ± tan ⁡ 1 2 θ 1 ∓ tan ⁡ 1 2 η tan ⁡ 1 2 θ = sin ⁡ η ± sin ⁡ θ cos ⁡ η + cos ⁡ θ = − cos ⁡ η − cos ⁡ θ sin ⁡ η ∓ sin ⁡ θ , tan ⁡ 1 2 θ = sin ⁡ θ 1 + cos ⁡ θ = tan ⁡ θ sec ⁡ θ + 1 = 1 csc ⁡ θ + cot ⁡ θ , ( η = 0 ) tan ⁡ 1 2 θ = 1 − cos ⁡ θ sin ⁡ θ = sec ⁡ θ − 1 tan ⁡ θ = csc ⁡ θ − cot ⁡ θ , ( η = 0 ) tan ⁡ 1 2 ( θ ± 1 2 π ) = 1 ± sin ⁡ θ cos ⁡ θ = sec ⁡ θ ± tan ⁡ θ = csc ⁡ θ ± 1 cot ⁡ θ , ( η = 1 2 π ) tan ⁡ 1 2 ( θ ± 1 2 π ) = cos ⁡ θ 1 ∓ sin ⁡ θ = 1 sec ⁡ θ ∓ tan ⁡ θ = cot ⁡ θ csc ⁡ θ ∓ 1 , ( η = 1 2 π ) 1 − tan ⁡ 1 2 θ 1 + tan ⁡ 1 2 θ = ± 1 − sin ⁡ θ 1 + sin ⁡ θ tan ⁡ 1 2 θ = ± 1 − cos ⁡ θ 1 + cos ⁡ θ From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles: sin ⁡ α = 2 tan ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α cos ⁡ α = 1 − tan 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α tan ⁡ α = 2 tan ⁡ 1 2 α 1 − tan 2 ⁡ 1 2 α gives sin ⁡ α = 2 sin ⁡ 1 2 α cos ⁡ 1 2 α = 2 sin ⁡ 1 2 α cos ⁡ 1 2 α / cos 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α = 2 tan ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α , and cos ⁡ α = cos 2 ⁡ 1 2 α − sin 2 ⁡ 1 2 α = ( cos 2 ⁡ 1 2 α − sin 2 ⁡ 1 2 α ) / cos 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α = 1 − tan 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α , and Taking the quotient of the formulae for sine and cosine yields tan ⁡ α = 2 tan ⁡ 1 2 α 1 − tan 2 ⁡ 1 2 α . rearranging, and taking the square roots yields | tan ⁡ α | = 1 − cos ⁡ 2 α 1 + cos ⁡ 2 α = 1 − cos ⁡ 2 α 1 + cos ⁡ 2 α 1 + cos ⁡ 2 α = 1 − cos 2 ⁡ 2 α 1 + cos ⁡ 2 α = | sin ⁡ 2 α | 1 + cos ⁡ 2 ...

How do you use half angle formula to find tan 15?

Half angle formulae for #(tan(theta))/2# #color(white)("XXX")=(sin(theta))/(1+cos(theta))color(white)("xxxxxxxx")#[1] #color(white)("XXX")=(cos(theta))/(1-sin(theta))color(white)("xxxxxxxx")#[2] #color(white)("XXX")=+-sqrt(1-cos(theta))/(1+cos(theta))color(white)("xxxx")#[3] Since #sin(30^circ)=1/2color(white)("xx")#and #color(white)("xx")cos(30^circ)=sqrt(3)/2# We can use [2] (for example) to get #tan(15^circ)=tan((30^circ)/2)=((sqrt(3)/2))/((1-1/2))=sqrt(3)#

The Proof of the Tangent Half

. Proof Consider a semi-circle with “center” and diameter and radius equal to 1 unit as shown below. If we let , then by the . Draw perpendicular to as shown in the second figure. We can compute for the sine and cosine of which equal to the lengths of and , respectively. In effect, and . Draw . Notice that and are similar triangles, so their corresponding angles are congruent. So, . Now, we compute for the tangent of . In triangle , . In triangle , . Therefore, . And we are done. *** The last figure is the proof without words of R. J. Walker.

Half Angle Formulas in Trigonometry with Examples and Derivations

Half-Angle Formulae For finding the values of angles apart from the well-known values of 0°, 30°, 45°, 60°, 90°, and 180°. Half angles are derived from double angle formulas and are listed below for sin, cos, and tan: • sin (x/2) = ± [(1 – cos x)/ 2] 1/2 • cos (x/2) = ± [(1 + cos x)/ 2] 1/2 • tan (x/ 2) = (1 – cos x)/ sin x • Half Angle Formula of Tan, tan A/2 = ±√[1 – cos A] / [1 + cos A] tan A/2 = sin A / (1 + cos A) tan A/2 = (1 – cos A) / sin A Half Angle Formulas Derivation Using Double Angle Formulas Half-Angle formulas are derived using double-angle formulas. Before learning about half-angle formulas we must learn about Double-angle in Trigonometry, most commonly used double-angle formulas in trigonometry are: • sin 2x = 2 sin x cos x • cos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2x = 2 cos 2x – 1 • tan 2x = 2 tan x / (1 – tan 2x) Now replacing x with x/2 on both sides in the above formulas we get • sin x = 2 sin(x/2) cos(x/2) • cos x = cos 2 (x/2) – sin 2 (x/2) = 1 – 2 sin 2 (x/2) = 2 cos 2(x/2) – 1 • tan A = 2 tan (x/2) / [1 – tan 2(x/2)] Half-Angle Formula for Cos Derivation We use cos2x = 2cos 2x – 1 for finding the Half-Angle Formula for Cos Put x = 2y in the above formula cos (2)(y/2) = 2cos 2(y/2) – 1 cos y = 2cos 2(y/2) – 1 1 + cos y = 2cos 2(y/2) 2cos 2(y/2) = 1 + cosy cos 2(y/2) = (1+ cosy)/2 cos(y/2) = ± √ Half-Angle Formula for Tan Derivation We know that tan x = sin x / cos x such that, tan(x/2) = sin(x/2) / cos(x/2) Putting the values of half angle for sin ...

The Proof of the Tangent Half

. Proof Consider a semi-circle with “center” and diameter and radius equal to 1 unit as shown below. If we let , then by the . Draw perpendicular to as shown in the second figure. We can compute for the sine and cosine of which equal to the lengths of and , respectively. In effect, and . Draw . Notice that and are similar triangles, so their corresponding angles are congruent. So, . Now, we compute for the tangent of . In triangle , . In triangle , . Therefore, . And we are done. *** The last figure is the proof without words of R. J. Walker.

Tangent half

tan ⁡ 1 2 ( η ± θ ) = tan ⁡ 1 2 η ± tan ⁡ 1 2 θ 1 ∓ tan ⁡ 1 2 η tan ⁡ 1 2 θ = sin ⁡ η ± sin ⁡ θ cos ⁡ η + cos ⁡ θ = − cos ⁡ η − cos ⁡ θ sin ⁡ η ∓ sin ⁡ θ , tan ⁡ 1 2 θ = sin ⁡ θ 1 + cos ⁡ θ = tan ⁡ θ sec ⁡ θ + 1 = 1 csc ⁡ θ + cot ⁡ θ , ( η = 0 ) tan ⁡ 1 2 θ = 1 − cos ⁡ θ sin ⁡ θ = sec ⁡ θ − 1 tan ⁡ θ = csc ⁡ θ − cot ⁡ θ , ( η = 0 ) tan ⁡ 1 2 ( θ ± 1 2 π ) = 1 ± sin ⁡ θ cos ⁡ θ = sec ⁡ θ ± tan ⁡ θ = csc ⁡ θ ± 1 cot ⁡ θ , ( η = 1 2 π ) tan ⁡ 1 2 ( θ ± 1 2 π ) = cos ⁡ θ 1 ∓ sin ⁡ θ = 1 sec ⁡ θ ∓ tan ⁡ θ = cot ⁡ θ csc ⁡ θ ∓ 1 , ( η = 1 2 π ) 1 − tan ⁡ 1 2 θ 1 + tan ⁡ 1 2 θ = ± 1 − sin ⁡ θ 1 + sin ⁡ θ tan ⁡ 1 2 θ = ± 1 − cos ⁡ θ 1 + cos ⁡ θ From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles: sin ⁡ α = 2 tan ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α cos ⁡ α = 1 − tan 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α tan ⁡ α = 2 tan ⁡ 1 2 α 1 − tan 2 ⁡ 1 2 α gives sin ⁡ α = 2 sin ⁡ 1 2 α cos ⁡ 1 2 α = 2 sin ⁡ 1 2 α cos ⁡ 1 2 α / cos 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α = 2 tan ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α , and cos ⁡ α = cos 2 ⁡ 1 2 α − sin 2 ⁡ 1 2 α = ( cos 2 ⁡ 1 2 α − sin 2 ⁡ 1 2 α ) / cos 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α = 1 − tan 2 ⁡ 1 2 α 1 + tan 2 ⁡ 1 2 α , and Taking the quotient of the formulae for sine and cosine yields tan ⁡ α = 2 tan ⁡ 1 2 α 1 − tan 2 ⁡ 1 2 α . rearranging, and taking the square roots yields | tan ⁡ α | = 1 − cos ⁡ 2 α 1 + cos ⁡ 2 α = 1 − cos ⁡ 2 α 1 + cos ⁡ 2 α 1 + cos ⁡ 2 α = 1 − cos 2 ⁡ 2 α 1 + cos ⁡ 2 α = | sin ⁡ 2 α | 1 + cos ⁡ 2 ...

3.4.4: Solving Equations with Double

\( \newcommand\) • • • • • • Solve sine, cosine, and tangent of angles multiplied or divided by 2. Trig Riddle: I am an angle x such that \(0\leq x<2\pi \). I satisfy the equation \(\sin 2x−\sin x=0\). What angle am I? Solve Trigonometric Equations We can use the half and double angle formulas to solve trigonometric equations. Let's solve the following trigonometric equations. • Solve \(\tan 2x+\tan x=0\) when \(0\leq x<2\pi \). Change \(\tan 2x\) and simplify. \(\begin Review Solve the following equations for \(0\leq x<2\pi \). • \(\cos x−\cos \dfrac=1\) • \(\cos 2x−1=\sin ^2x\) • \(\cos 2x=\cos x\) • \(\sin 2x−\cos 2x=1\) • \(\sin ^2x−2=\cos 2x\) • \(\cot x+\tan x=2\csc 2x\)

Half Angle Formulas in Trigonometry with Examples and Derivations

Half-Angle Formulae For finding the values of angles apart from the well-known values of 0°, 30°, 45°, 60°, 90°, and 180°. Half angles are derived from double angle formulas and are listed below for sin, cos, and tan: • sin (x/2) = ± [(1 – cos x)/ 2] 1/2 • cos (x/2) = ± [(1 + cos x)/ 2] 1/2 • tan (x/ 2) = (1 – cos x)/ sin x • Half Angle Formula of Tan, tan A/2 = ±√[1 – cos A] / [1 + cos A] tan A/2 = sin A / (1 + cos A) tan A/2 = (1 – cos A) / sin A Half Angle Formulas Derivation Using Double Angle Formulas Half-Angle formulas are derived using double-angle formulas. Before learning about half-angle formulas we must learn about Double-angle in Trigonometry, most commonly used double-angle formulas in trigonometry are: • sin 2x = 2 sin x cos x • cos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2x = 2 cos 2x – 1 • tan 2x = 2 tan x / (1 – tan 2x) Now replacing x with x/2 on both sides in the above formulas we get • sin x = 2 sin(x/2) cos(x/2) • cos x = cos 2 (x/2) – sin 2 (x/2) = 1 – 2 sin 2 (x/2) = 2 cos 2(x/2) – 1 • tan A = 2 tan (x/2) / [1 – tan 2(x/2)] Half-Angle Formula for Cos Derivation We use cos2x = 2cos 2x – 1 for finding the Half-Angle Formula for Cos Put x = 2y in the above formula cos (2)(y/2) = 2cos 2(y/2) – 1 cos y = 2cos 2(y/2) – 1 1 + cos y = 2cos 2(y/2) 2cos 2(y/2) = 1 + cosy cos 2(y/2) = (1+ cosy)/2 cos(y/2) = ± √ Half-Angle Formula for Tan Derivation We know that tan x = sin x / cos x such that, tan(x/2) = sin(x/2) / cos(x/2) Putting the values of half angle for sin ...

How do you use half angle formula to find tan 15?

Half angle formulae for #(tan(theta))/2# #color(white)("XXX")=(sin(theta))/(1+cos(theta))color(white)("xxxxxxxx")#[1] #color(white)("XXX")=(cos(theta))/(1-sin(theta))color(white)("xxxxxxxx")#[2] #color(white)("XXX")=+-sqrt(1-cos(theta))/(1+cos(theta))color(white)("xxxx")#[3] Since #sin(30^circ)=1/2color(white)("xx")#and #color(white)("xx")cos(30^circ)=sqrt(3)/2# We can use [2] (for example) to get #tan(15^circ)=tan((30^circ)/2)=((sqrt(3)/2))/((1-1/2))=sqrt(3)#